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PhD School on Quantum Field Theory, Strings and Gravity, Fall 2019

Solutions for problem set #n?

1. A walkthrough on vacuum entanglement

(a) Plugging in the ansatz Φ(t, x) = cei(±kx±ωt) with uncorrelated signs, into the wave
equation, we find (

−∂2
t + ∂2

x

)
Φ = (k2 − ω2)Φ

meaning ω = |k| satisfies the wave equation.
(b) Plugging in the coordinate transformation

t = eaξ

a
sinh aτ , x = ±e

aξ

a
cosh aτ .

into the definition of the metric ds2 = −dt2 + dx2 gives the Rindler metric

ds2 = e2aξ
(
−dτ2 + dξ2

)
.

The equation satisfied by a massless scalar field in these coordinates is:

1√
−g

∂µ
(√
−ggµν∂ν

)
Φ = e−2aξ

(
−∂2

τ + ∂2
ξ

)
Φ = 0

meaning, that, in complete anaglogy with the previous problem, the solution to the
wave equation, in the right wedge is

ΦR(τ, ξ) =
∫ ∞

0

ds√
4πs

[
bRs e

is(ξ−τ) + bR†s e−is(ξ−τ)
]

+ (τ → −τ, bRs → bR−s) . (1)

The left wedge is exactly the same, except that the Killing field ∂τ is now past directed,
so the creation and annihilation operators get swapped:

ΦL(τ, ξ) =
∫ ∞

0

ds√
4πs

[
bL†s e

is(ξ−τ) + bLs e
−is(ξ−τ)

]
+ (τ → −τ, bLs → bL−s) . (2)

The natural quantization condition is[
bR/Ls , b

R/L†
s′

]
= δ(s− s′) ,

[
bL/Rs , b

L/R
s′

]
=
[
bL/R†s , b

L/R†
s′

]
= 0

and the Rindler vacuum satisfies bL/Rs |0〉R = 0 ∀s.
(c) In the original Minkowski coordinates, we can write the right moving sector of the

fields as:

ΦR =
∫ ∞

0

ds√
4πs

[
bRs {a(x− t)}is/a + bR†s {a(x− t)}−is/a

]
,

ΦL =
∫ ∞

0

ds√
4πs

[
bL†s {a(t− x)}is/a + bLs {a(t− x)}−is/a

]
.

To extract the annihilation operator, Notice that for p > 0 we have the expression√
p

π

∫
dx e−ipx Φ(t = 0, x) = ap.

1



Now we write Φ(x) = θ(x)ΦR(x) + θ(−x)ΦL(x) and use the above expression. Carefully
performing the Fourier transform (e.g. in Mathematica) gives

ap =
∫ ∞

0
ds
eπs/(2a)

2π√ps

{(
a

p

)−is/a
Γ
(

1− is

a

)(
bLs − e−πs/abR†s

)
−

(
a

p

)is/a
Γ
(

1 + is

a

)(
bRs − e−πs/abL†s

)}
.

We conclude from this little exercise that(
bRs − e−πs/abL†s

)
|0〉M =

(
bLs − e−πs/abR†s

)
|0〉M = 0

for all s.
(d) For this one, we need the Baker-Campbell-Hausdorff formula

eXY e−X = Y + [X,Y ] + 1
2! [X, [X,Y ]] + 1

3! [X, [X, [X,Y ]]] + . . . (3)

We can start with(
bRs − e−πs/abL†s

)
|0〉M =

(
bRs − e−πs/abL†s

)
Ce
[
−
∫
dk g(k) bL†

k
bR†

k

]
|0〉R

= Ce
[
−
∫
dk g(k) bL†

k
bR†

k

] (
−e−πs/abL†s + bRs +

∫
dk g(k)[bL†k b

R†
k , bRs ] + . . .

)
|0〉R

= Ce
[
−
∫
dk g(k) bL†

k
bR†

k

] (
−e−πs/a − g(s)

)
bL†s |0〉R

from which we conclude that
g(s) = −e−πs/a .

For the Rindler observer, empty Minkowski space is a state populated with EPR pairs
in the left and right wedges. Since the Rindler observer only has access to one side,
the quantum state that she can access will be the reduced density matrix of the right
wedge, which can be shown to be thermally populated.

2. Hawking radiation generates too much entanglement
In the previous problem we studied the entanglement properties of a horizon of infinite size.
But the Schwarzschile black hole is finite and shrinking. At any given time, the EPR pairs
produced will have wavelengths of order the horzion size, therefore, we need not consider
a continuous integral over all wave modes, but it suffices to only include wave modes in a
window around the horizon size. This gives us

|Ψ〉 = |ψm〉 ⊗ ega
L†
k
aR†

k |0Schw〉

where ψm is the state of the quantum matter. Approximating this state by

|Ψ〉 ≈ |ψm〉 ⊗
1√
2

(|0L〉|0R〉+ |1L〉|1R〉)

and forming the reduced density matrix ρR = TrM,L|Ψ〉〈Ψ| we find

ρR = 1
2 (|0R〉〈0R|+ |1R〉〈1R|) .

which can be represented as ρR = 1
212×2. The entanglement entropy Sent = −TrR ρR log ρR =

log 2
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3. At step 2, the reduced density matrix on the right is

ρR = 1
4 (|0R1〉〈0R1 |+ |1R1〉〈1R1 |)⊗ (|0R2〉〈0R2 |+ |1R2〉〈1R2 |) .

which can be represented as ρR = 1
414×4. Computing the entanglement entropy of this

reduced density matrix yields Sent = 2 log 2. It is quite easy to guess that at the N th step
the entanglement entropy will be Sent = N log 2.

4. After N such steps if the black hole is completely evaporated, the final state of the radiation
should be pure, as there is nothing left for it to be entangled with. But we have shown
that the entanglement entropy of the radiation is N log 2. It seems we have evolved from a
pure state to a mixed state. But this can’t be. We have derived this in an absurdly simple
aproximation scheme! As you will see in the lecture, if we assume that physics is local and
without drama at the horizon and we pick our spatial slices to be weakly curved everywhere
(avoiding the singularity), then we can not avoid this conclusion. One of our assumptions
must break down, e.g. that physics is not local, or that there is drama at the horizon. The
point of the information paradox is to understand how these assumptions break down.

5. Good luck. The future rests in your hands.
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