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The typical ride when someone starts to learn string theory
anything:
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Instead of riding (and falling off) that roller coaster, my goal
today will be to explain, using simple examples, how theoretical
physicists go about their business.



Instead of riding (and falling off) that roller coaster, my goal
today will be to explain, using simple examples, how theoretical
physicists go about their business.

And instead of learning about the complicated details of black
holes and string theory, let us start by going 150 years into the
past.



1. Historical interlude

2. A solvable model

3. Black holes



150 years ago, physicists were obsessed with understanding the
properties of gases



Experiments in the 1800s had revealed that most gases obey the
ideal gas law:

PV

T
= constant .

I P is the pressure

I V is the volume

I T is the temperature

I the constant is defined to be Boltzmann’s constant kB
times the number of particles N

Physicists at the time wanted to understand this formula
starting from basic principles.



Kinetic Theory

This led to the discovery of the the
kinetic theory of gases in the 1850s:

its aim was to explain the macroscopic
properties of a gas (pressure, volume,
temperature, viscosity...) through the
microscopic properties of the gas
particles.



Kinetic Theory: basics

Let us consider the effect of a single gas particle on its
container:1

Force on a wall by one particle:

Fsingle particle =
∆p

∆t

I ∆p = 2mvx

I ∆t = 2× L/vx:

I Fsingle particle =
mv2x
L

1Clausius (1857).



Kinetic Theory: basics

The total force on the wall comes from accounting for all the N
particles

Ftotal = N × m〈v2x〉
L

and 〈v2x〉 is the average velocity in the x direction. The total
average velocity is :

〈v2〉 = 〈v2x〉+ 〈v2y〉+ 〈v2z〉

so if we assume that the average velocities in all directions are
the same then we find:

Ftotal =
1

3
N × m〈v2〉

L



Kinetic Theory: basics

Now the pressure on the wall is the total force per unit area:

P =
Ftotal

L2
=

(
1

3
N × m〈v2〉

L

)
/L2

PV =
1

3
Nm〈v2〉

where the volume V = L3. So we’ve established

PV ∝ N × 〈kinetic energy per particle〉



Experiments

But we never measure the average kinetic energy of each gas
particle in experiments!

Remember, our goal was to understand
the origin of the ideal gas law

PV = NkBT .

So if we trust our theoretical derivation,
it implies:

〈v2〉 = 3kBT/m



Maxwell hits the scene

In 1866 James-Clerk Maxwell realized this equation
〈v2〉 = 3kBT/m implies that particle velocities follow a
probability distribution

f(vx, vy, vz) =(
m

2πkBT

)3/2

e
− m

2kBT
(v2x+v2y+v2z)

Thinking about the problem probabilistically was the key that
led to many more derivations including heat conductivities and
viscosity.



Brief Pause

Let’s recap. We:

1. calculated the force of a single particle on the wall

2. derived a relation between PV and 〈v2〉

3. compared our results to experiment where PV = NkBT

4. concluded that the distribution of particle velocities
depends on the system temperature.

But reality was much messier than that. We have the benefit of
hindsight to tell a nice story, but for years physicists argued as
to whether the kinetic theory was useful for anything at all.



Statistical mechanics

There are a few problems with the kinetic theory and Maxwell’s
distribution:

1. Not all gases obey the ideal gas law.

2. Some gases can be ideal, but mixtures of two species of
particles, what then?

3. What real lessons do we learn?

The job of the theorists of the time was to explain how gases
work in general. How do we generalize the lessons of ideal gases
to other systems?



Statistical Mechanics

In 1872 Ludwig Boltzmann burst onto the scene



Statistical Mechanics

By simply looking at Maxwell’s distribution:2

f(vx, vy, vz) =

(
m

2πkBT

)3/2

e
− m

2kBT
(v2x+v2y+v2z)

Boltzmann noticed that it was of the form:

f = N e−β×E

I β = 1
kBT

I E is the kinetic energy.

2now called Maxwell-Boltzmann



Statistical Mechanics

The interpretation of this equation is that the probability of our
gas being in any one state is given by

pstate ∝ e−βEstate β =
1

kBT



Statistical Mechanics

Of course, we need probabilities to add up to 1:∑
states

pstate = 1 ,

so the probability is really

pstate =
e−βEstate

Z
Z =

∑
states

e−βEstate

For the case of the ideal gas

Estate =
∑

particles

1

2
m~v2particle

is the kinetic energy of all the particles. But what if E were
something different? For example, what if E took into account
interparticle interactions?



Statistical Mechanics

Boltzmann’s first insight was that E is system dependent. It
could include kinetic, potential and interatomic interactions.

If we want to describe a gas that doesn’t obey the ideal gas law,
we need to generalize the energy function E.

Boltzmann’s second insight was that most equilibrium
thermodynamic properties of a system could be calculated from
Z, often called the partition function:

Z(β) =
∑
states

e−βEstate

For example the free energy F = −β−1 lnZ(β).



Nowadays, the way we associate an energy to a particular state
of our collection of particles is what we call a theory.3 A
commonly used synonym for this term is a model.

3This is true of the theory of electromagnetism or general relativity.



Statistical Mechanics

Boltzmann sadly did not live to see these insights fully
appreciated. In 1906 he committed suicide, and some believe it
was because his peers ridiculed him for these concepts.

By now, Boltzmann’s formulation of thermodynamics has
passed every conceivable experimental test.



Statistical Mechanics, what’s the point?

One important point to take from all of this is that the
partition function

Z(β) =
∑
states

e−βEstate

(which was derived to understand gases) can be used to study
any system where there is a function that assigns a state →
energy.

This concept is used in every subfield of theoretical physics,
from the study of gases to string theory! It is also at the origin
of quantum mechanics, although I won’t get into that.



Statistical Mechanics, what’s the point?

The downside is that, in practice, the partition function

Z(β) =
∑
states

e−βEstate

is very difficult if not impossible to compute.

If I were to summarize a large chunk of theoretical physics work
it would be:

1. The search for models where Z(β) may be computable

2. Trying to compute Z(β)

2.1 If successful, extract physical insights



1. Historical interlude

2. A solvable model

3. Black holes



I’ve claimed that we can study the partition function of any
system, not just gases. So now I’m going to try and convince
you that we can use the partition function to study magnets.



What do we know about magnets?

1. At home, you probably have magnets on your fridge. These
have a magnetic dipole.

2. What you might not know, is that if you heat up a magnet,
it loses this magnetic dipole.



What do we know about magnets?

This is true of all bar magnets! It doesn’t matter what they’re
made of.



Let us try to build a model of this phenomenon. To be more
specific, the model should explain the property that bar
magnets have nonzero magnetization in the absence of an
external magnetic field— a.k.a ferromagnetism

And the model should explain the property that if you heat up
the magnet, it loses its magnetism.



The natural place to start building such a model would be to
appeal to atomic physics and orbitals etc.

But that’s too complicated!



Lenz 1920:

We will simply assume that we
have a lattice of immovable spins
σ = {±1} and

E = −J
∑
〈ij〉

σiσj −H
∑
i

σi

I the total energy is lowered by
J whenever two spins are
aligned

I H is an external magnetic
field, if a spin points up, E is
lowered by an amount H.



This is a gross approximation of how a magnet should work.
The surprise is that it makes extremely precise predictions.

E = −J
∑
〈ij〉

σiσj −H
∑
i

σi

I Z(β,H) for the 1d lattice was
obtained by Ising in 1925

I Z(β,H = 0) in 2d was solved by
Onsager in 1944

I The solution for the 3d model is
still not known.



Solution in 1d

Unfortunately the magnetization M(H,T ) of the system for a
1d chain of spins does not display ferromagentism.

M(H = 0, T ) = 0

1d chains are paramagnets.



d = 1 chain

Z =

[
coshβH +

√
sinh2 βH + e−4βJ

]βJN
d→∞ lattice

Z = e−2βJM2

[2 cosh {β (H + 4MJ)}]N

M = tanh {β (H + 4MJ)}

Try calculating these at home
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H≠0

H=0
0.5 1.0 1.5 2.0

T

0.2

0.4

0.6

0.8

1.0

M

d > 1 lattice

H=0

H≠0

Tc

0.0 0.5 1.0 1.5 2.0
T0.0

0.2

0.4

0.6

0.8

1.0

M

These plots are obtained by studying the partition function
Z(β,H) of this system of immovable spins.

Tc is the phase transition temperature.



This model can be used to study many more properties of
magnets, such as its specific heat or magnetic susceptibility, or
heat conductivity. And it gets many things right!

Amazing because we know that magnets are made of much
more complicated things than these ±1 bound spins.



1. Historical interlude
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My job is to understand black holes.

That means I want to come up with a model as dumb as the
model where a magnet is built out of a bunch of ±1 spins.



Why is that hard?

Remember how we built a model of a magnet:

1. Do experiments on magnet to determine its properties

2. Guess at a model that reproduces these properties

3. Calculate!

4. Compare calculations with experiments



Why is that hard?

Let’s try to do this for a black hole, treating it like a material or
a state of matter.

1. Do experiments on BH to determine its properties

2. Guess at a model that reproduces these properties

3. Calculate!

4. Compare calculations with experiments

5. Use calculations to determine what we expect of black holes

6. Are there any materials on earth that exhibit these
properties?



What have we calculated about BHs?

I They have negative specific heat:
if you add energy, T decreases

I The entropy scales with the area
instead of the volume

I To best approximation: they
radiate with an exact black body
spectrum

No material on earth has all of these properties



Scientists have worked for over 40 years to come up with
something that may model these phenomena, but it will take
the duration of an entire PhD for me to tell you what those are.
So I will stop here.



Lesson

I just want you to takeaway that we theorists study black holes
using the exact same tools we use to study magnets.



THANK YOU


	Historical interlude
	A solvable model
	Black holes

